Bacterial toxin YafQ is an endoribonuclease that associates with the ribosome and blocks translation elongation through sequence-specific and frame-dependent mRNA cleavage

Summary

Toxin–antitoxin (TA) systems on the chromosomes of free-living bacteria appear to facilitate cell survival during intervals of stress by inducing a state of reversible growth arrest. However, upon prolonged stress, TA toxin action leads to cell death. They have been implicated in several clinically important phenomena – bacterial persistence during antibiotic treatment, biofilm formation and bacterial pathogenesis – and serve as attractive new antibiotic targets for pathogens. We determined the mode of action of the YafQ toxin of the DinJ–YafQ TA system. YafQ expression resulted in inhibition of translation, but not transcription or replication. Purified YafQ exhibited robust ribonuclease activity in vitro that was specifically blocked by the addition of DinJ. However, YafQ associated with ribosomes in vivo and facilitated rapid mRNA degradation near the 5' end via cleavage at AAA lysine codons followed by G/A. YafQ(H87Q) mutants lost toxicity and cleavage activity but retained ribosome association. Finally, LexA bound to the dinJ–yafQ palindrome and triggered module transcription after DNA damage. YafQ function is distinct from other TA toxins: it associates with the ribosome through the 50S subunit and mediates sequence-specific and frame-dependent mRNA cleavage at AAA – G/A3 sequences leading to rapid decay possibly facilitated by the mRNA degradosome.

Meredith H. Prysak, Christopher J. Mozdzierz, Angela M. Cook, Ling Zhu, Yonglong Zhang, Masayori Inouye and Nancy A. Woychik
Departments of Molecular Genetics, Microbiology and Immunology, Biochemistry, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA.

Introduction

Toxin–antitoxin (TA) systems/modules (also referred to as addiction or suicide modules) were first identified on plasmids due to their ability to induce post-segregational killing, because the cell becomes dependent on the presence of the TA-harbouring plasmid for survival (Gerdes et al., 1986). However, these TA systems are also present on the chromosomes of free-living bacteria. Chromosomal TA modules typically comprise an autoregulated operon minimally encoding both a labile antitoxin and a more stable toxic protein (Gerdes et al., 2005). All characterized chromosomal TA toxins facilitate inhibition of cell growth by targeting essential cell processes such as replication and translation. This inhibition appears to be an adaptation that facilitates stress survival. TA toxin-mediated growth arrest is reversible up to a 'point of no return', beyond which cell death occurs (Pedersen et al., 2002). The function of the antitoxin, in contrast, is to prevent toxin activity during normal growth and enable finely tuned control of TA module toxicity during relatively short periods of environmental stress (Gerdes et al., 2005).

There are five confirmed chromosomal TA loci in Escherichia coli K-12 cells: relBE, yefM–yoeB, mazEF, chpBI-BK and hipBA (Gerdes et al., 2005). The toxins MazF and ChpBK are sequence-specific endoribonucleases that target free mRNA (independent of the ribosome) for degradation, thus indirectly perturbing translation (Christensen et al., 2003; Zhang et al., 2003; 2005a,b; Munoz-Gomez et al., 2004). The toxins RelE and ChpBK are sequence-specific endoribonucleases that target free mRNA (independent of the ribosome) for degradation, thus indirectly perturbing translation (Christensen et al., 2003; Zhang et al., 2003; 2005a,b; Munoz-Gomez et al., 2004). The RelE toxin also perturbs translation, but does so through interaction with the ribosome by preferentially targeting stop codons in a sequence-specific manner, with a preference for UAG (Christensen and Gerdes, 2003; Christensen et al., 2001; Pedersen et al., 2003). Although the hipBA TA system is poorly understood and its mechanism of toxicity is unknown, it appears to be a kinase whose action contributes to the formation of bacterial persisters upon antibiotic treatment (Keren et al., 2004; Correia et al., 2006; Korch and Hill, 2006). A sixth TA locus, dinJ–yafQ, has been recently identified (Motiejunaite et al., 2007). The intracellular targets and precise mechanism of toxicity of YoeB, HipA and YafQ have not been identified.
In the present work, we characterized the basic properties of the DinJ–YafQ TA module and determined the mechanism of YafQ-mediated toxicity. YafQ expression resulted in translation, but not transcription or replication defects. Northern analysis revealed that mRNA was rapidly degraded in most, but not all, mRNAs tested following YafQ expression in vivo. Recombinant YafQ possessed robust ribonuclease activity in vitro that was blocked by addition of DinJ. Some degree of sequence specificity was detectable upon YafQ titration in vitro. However, YafQ associated with the 50S ribosomal subunit of the 70S ribosome in vivo and exhibited clear sequence-specific and frame-dependent endoribonuclease activity. Therefore, YafQ toxicity is distinct from other TA toxins: it associates with ribosomes, mediates mRNA cleavage at 5′ AAA – G/A3′ consensus sequences (which are well represented in mRNAs, especially at codon +2), leading to translation complex arrest shortly after the transition from the initiation to the elongation step.

Results

The DinJ–YafQ TA system

YafQ exhibits sequence similarity to the RelE family of TA toxins but remains largely uncharacterized (Gerdes et al., 2005). YafQ has recently been identified as a possible toxin of a chromosomally encoded E. coli TA module based on its sequence similarity to two other such toxins, relE and yoeB (Gerdes et al., 2005; Motiejunaite et al., 2007). In addition, the gene immediately 5′ of yafQ, dinJ, shares sequence similarity to the relB and yefM antitoxins. The dinJ–yafQ module exhibits other features typical of a TA system: the genes are adjacent with minimal overlap (in vivo), encoding small proteins (DinJ is 86 amino acids and 9.4 kDa; YafQ is 96 amino acids and 10.8 kDa), the proteins often have opposing isoelectric points (DinJ pl is 5.24, YafQ pl is 9.52) and a palindrome sequence is upstream of the module for transcriptional autoregulation (dinJ–yafQ has a palindrome containing a LexA box whose function is addressed later). In order to demonstrate that yafQ indeed encodes a toxic protein, we cloned yafQ onto the arabinose-inducible pBAD33 promoter. YafQ induction of mid-logarithmic E. coli cells resulted in complete and stable growth inhibition after 30 min (Fig. 1A). Plating of colony forming units was consistent with the growth profile (Fig. S1). Using the same strategy, DinJ overexpression did not result in any reduction in growth rate compared with wild-type cells (data not shown). However, coexpression of both antitoxin and toxin genes from the dinJ–yafQ module (Fig. 1B) or coinduction of dinJ and yafQ from indepen-
Fig. 1. Features of the DinJ–YafQ TA system.
A. YafQ expression leads to growth arrest. Growth profile of BW25113 cells containing pBAD33-YafQ grown at 37°C in LB-chloramphenicol with (induced) or without (uninduced) 0.2% arabinose; standard deviations result from two independent experiments.
B. DinJ can rescue YafQ-mediated growth arrest. Coexpression of the dinJ–yafQ module (d–y, bottom), yafQ alone (y, top) in pBAD33 on LB-chloramphenicol plates incubated at 37°C overnight with or without 0.2% arabinose.
C. DinJ copurifies with YafQ. BL21(DE3) [dinJ-yaf(His)₆-pET21c] cell lysate (induced) before Ni-NTA affinity chromatography to isolate the DinJ–YafQ(His)₆ complex (elution) and YafQ (renatured YafQ). Uninduced lane is the –IPTG control lysate. Molecular weight markers on the left.
D. DinJ is cleaved by Lon and ClpXP proteases. BW25113 or isogenic protease deletion cells carrying dinJ-pINIII were IPTG induced before treatment with hygromycin B. Cell lysates were subjected to SDS-PAGE and Western analysis (using a polyclonal antibody to DinJ + YafQ) to determine DinJ stability.
E and F. YafQ inhibits translation in vitro and in vivo. Quantification of [³⁵S]-methionine incorporation in toluene treated (E) or living cells (F) with or without YafQ induction. Standard deviations in E and F result from two independent experiments.
occurred shortly after YafQ induction, suggesting that YafQ expression blocks translation (Fig. 1E), consistent with earlier results of Motiejunaite et al. (2007).

Defects in translation are characterized by a severe and immediate reduction in [35S]-methionine incorporation whereas RNA synthesis should not be significantly affected and DNA replication should not be affected until later time points (when labile, essential replication proteins cannot be replenished). We then measured in vivo [35S]-methionine incorporation in YafQ-induced E. coli cells (Fig. 1F). Relative to the control, protein synthesis decreased by 50% after 30 min and by approximately 70% after 90 min. We also measured in vivo incorporation of radioactively labelled precursors of mRNA and DNA respectively, and obtained incorporation profiles consistent with defective translation (Fig. S2). Collectively, YafQ expression specifically disrupted de novo protein synthesis in vivo. A translational defect in response to expression is in keeping with the phenotype observed for many of the described chromosomally encoded E. coli TA modules, including RelE, a YafQ family member (Christensen et al., 2001; 2004).

YafQ exhibits ribonuclease activity in vitro and in vivo

As chromosomal TA toxins MazF and ChpBK block translation through site-specific cleavage of mRNA independent of ribosomes (Zhang et al., 2003; 2005b), we determined if YafQ possessed ribonuclease activity. We first assayed the activity of YafQ on RNA in vitro. Active YafQ(His)6 was isolated from DinJ through a series of denaturation/renaturation steps and increasing amounts of recombinant toxin were added to a fixed amount of E. coli total RNA (Fig. 2A). We observed dose-dependent cleavage of total RNA by YafQ(His)6. This cleavage was specifically due to the activity of YafQ(His)6 and not a contaminating ribonuclease because the pre-incubation of YafQ(His)6 with pure DinJ antitoxin before addition of RNA completely inhibited RNA cleavage (Fig. 2A). This finding is consistent with our previous data demonstrating that DinJ physically interacts with YafQ (Fig. 1C) and coexpression of DinJ with YafQ rescues the toxicity observed with YafQ expression alone (Fig. 1B).

We next examined steady-state levels of three highly expressed mRNAs (ompA, ompF and lpp encoding outer membrane protein A, outer membrane porin 1a and murein lipoprotein respectively) before, and at intervals after, YafQ induction in E. coli cells (Fig. 2B). We observed a rapid and complete or nearly complete loss of each of the three mRNAs upon YafQ expression. The steady-state levels of the respective control mRNAs without YafQ induction were either stable or increased with time. These data indicated that YafQ also mediates mRNA degradation in vivo.

Finally, we examined YafQ cleavage specificity in vitro with a recently developed assay (Zhu et al., 2006) that utilizes a long, single-stranded RNA substrate (bacteriophage MS2 RNA). MS2 RNA is commercially available and comprises a nearly equal base content (26% G, 23% A, 26% C and 25% U) within its 3569 nucleotides. MS2, as with any long single-stranded RNA, tends to form extensive secondary structures. Therefore, the major cold shock protein and RNA chaperone that prevents secondary structure formation, CspA, was added to the reaction at a concentration known to saturate mRNA.

After careful titration of the same YafQ preparation used in Fig. 2A, we were able to clearly identify six specific cleavage sites upon primer extension analysis with selected MS2 oligonucleotides (Fig. 3). Notably, all six cleavage sites that we identified were YafQ-specific because cleavage activity was abrogated in the presence of the cognate DinJ antitoxin. The only apparent consensus sequence among the six cleavage sites was a GG doublet on either side of the cut site in five of the six sites (Fig. 3F). Unlike studies with the MazF toxin in this same assay, it was necessary to dilute the enzyme more...
Fig. 3. YafQ site specificity in vitro.
A–F. Primer extension experiments after cleavage of MS2 RNA with YafQ(His)6. Cleavage site either becomes visible or greatly enhanced by the addition of CspA to open up MS2 RNA secondary structure. Major cuts sites represented by black arrows, minor by grey arrows. The RNA recognition sequence is shown to the right and was derived from the RNA complement of the DNA sequencing ladder on the right. The same oligonucleotide was used for both the primer extension and sequencing reaction.
G. Alignment of sequences containing the YafQ cleavage site; the GG consensus is in bold.

© 2009 The Authors
Journal compilation © 2009 Blackwell Publishing Ltd, Molecular Microbiology, 71, 1071–1087
Fig. 4. YafQ mediates sequence-specific and frame-dependent mRNA cleavage.
A. Primer extension analysis of the same mRNAs analysed in Fig. 2B, 90 min wild-type (wt) samples corresponding DNA sequences to the left. Primers were selected to show all major cleavage products on a single gel; FL, full-length products; exact cleavage positions of mRNAs near the top of the gel were determined with closer primers. YafQ consensus cleavage sites as indicated to the right. Putative RNase E sites shown in parentheses. The ompF 30 min lane was not loaded onto this gel but the products are similar to the time points before and after it. The sequencing ladder next to the lower lpp consensus does show a C band (G for the mRNA) in darker exposures; the sequence of the ompFL ladder has a point mutation near the putative RNase E sequence; however, the correct sequence is typed to the right.
B. Summary of YafQ cleavage sites from panel A. Grey bars represent mRNAs (drawn to scale) of the coding region only (5′ and 3′ non-coding regions are absent). Only the first ~150 nucleotides of the 1089-nucleotide ompF coding region were analysed, shown in grey.
C. Alignment of the six major YafQ cleavage sites and the resulting consensus.

extensively because higher enzyme/substrate ratios [comparable to those used for MazF studies (Zhu et al., 2006)] resulted in comprehensive, non-specific cleavage; this observation was also consistent with the potent cleavage of RNAs exhibited by YafQ in Fig. 2A.

YafQ cleaves mRNAs at AAA (lysine) codons

Because YafQ exhibited potent ribonuclease activity in vitro and in vivo, we next tested whether YafQ exhibited sequence-specific endonuclease activity — a characteristic of the MazF and ChpBK TA toxins — by performing primer extension experiments with RNA prepared from YafQ induced cells. We expressed YafQ in an E. coli strain ('∆6') that lacks the loci for each of the six known chromosomal TA modules (mazEF, relBE, chpB, hipBA, yefM-yoeB and dinJ-yafQ). Use of the ∆6 strain precluded mRNA cleavage as a consequence of downstream activation of other TA toxins resulting from the stress imparted by YafQ expression. We isolated total RNA from YafQ-induced and uninduced ∆6 cells and performed primer extension analyses on the same three transcripts subjected to Northern analysis, initially with primers ~150 nucleotides downstream of the 5′ end of the translation start site. We then performed additional primer extension experiments to enable nearly complete coverage of two mRNAs, lpp (237 base pairs) and ompA (1041 base pairs), allowing us to determine if YafQ-mediated cleavage was detectable elsewhere in the transcript. In total, we detected two YafQ-specific major cleavage sites for each mRNA (six total, Fig. 4A) revealing a minimal consensus recognition sequence of 5′AAA – G/A3′ in which the AAA, encoding lysine, must be in frame (Fig. 4C); no cleavage was observed at either 5′XAA – A(G/A)X3′ or 5′XXA – AA(G/A)3′ sequences present in each the three mRNAs we tested (Fig. 4B).

Curiously, a non-consensus YafQ-dependent cleavage site was detected just downstream of the two major YafQ 5′AAA – G/A3′ consensus cut sites in ompF (Fig. 4A). The AU-rich sequence of this cleavage site, 5′GCA1UUAAUUUU3′, matched the consensus for RNase E (Ehretsmann et al., 1992; Redko et al., 2003). RNase E is single-strand specific endoribonuclease required for rapid mRNA decay and accurate RNA processing in E. coli. Therefore, cleavage of ompF at 5′GCA1UUAAUUUU3′ was likely the result of RNase E-mediated hydrolysis of an ompF fragments with free 5′ and 3′ monophosphate, depending on the mechanism of YafQ cleavage) that were generated upon YafQ cleavage. RNase E-mediated decay of YafQ-cleaved mRNA is consistent with the rapid decrease in steady-state mRNA levels noted for ompF (Fig. 2B). In fact, the rapid degradation of the lpp and ompA mRNAs also likely enlists the action of cellular RNases that cleave RNA fragments having free 5′ ends (Carpousis, 2007) generated upon YafQ hydrolysis in vivo. We detected another potential RNase E consensus site 5′UGG1UUU3′ in ompA mRNA that precedes a ladder of light bands in the bottom third of the ompA primer extension panel; the ladder may represent products of 3′-5′ exoribonuclease(s), which are also major players in mRNA degradation (Fig. 4A). Likewise, darker exposures of the lpp primer extensions revealed the presence of several light bands after the initial strong cleavage by YafQ.

We noted several trends upon analysis of our primer extension data. First, the apparent consensus for ribosome-associated YafQ cleavage was an in-frame AAA lysine codon followed by a purine residue, 5′AAA – G/A3′ (Fig. 4C); out of frame consensus sequences were well represented yet not cleaved (Fig. 4B). Second, of the three transcripts we tested, there was a preference for guanine at the fourth position (five of the six sites detected had G at position 4). Third, each of the six 5′AAA – G/A3′ consensus sites identified were cut on the 5′ side of the third A of the AAA triplet (at the phosphodiester bond between the second and third adenine, i.e. 5′AA1AGA3′). Fourth, major cleavage sites were only found within 180 nucleotides of the translation start site even for large transcripts such as ompA, despite the presence of additional downstream consensus sequences. In fact, the second (and last) major cleavage site we detected for ompA was at codon 24 even though this mRNA comprises 347 codons with seven YafQ consensus sites after codon 24 (Fig. 4B), indicating a preference for cleavage early in the mRNA. Fifth, after YafQ cleavage, the RNA degraded (Carpousis, 2007) appears to be enlisted to facilitate a secondary mechanism driving the rapid, complete degradation of mRNAs. Sixth, the first major YafQ cleav-
YafQ interacts with the E. coli ribosome in vivo

Of the other two YafQ family member toxins, YoeB and RelE, the mechanism of action of only RelE has been elucidated (Christensen et al., 2001; Galvani et al., 2001). As RelE functions through the ribosome and the consensus for YafQ cleavage exhibited a preference for in-frame AAA codons, we tested if YafQ also interacted with the ribosome. We first obtained ribosome profiles from control and YafQ-induced E. coli cells to determine if YafQ expression altered the profile pattern (Fig. 5). Thirty minutes after YafQ induction (a point where cell growth was completely arrested, Fig. 1A) we consistently observed two anomalies in the ribosome profiles relative to the wild-type control: lower polysome peak heights and the appearance of an additional peak sedimenting at a slightly lower density than the 30S peak. This suggested that the presence of YafQ decreased polysome stability and directly or indirectly altered ribosome structure in vivo.

To assess whether YafQ directly interacted with ribosomes or ribosomal subunits, we subjected the ribosome profile fractions from Fig. 5B to Western blotting analysis using a polyclonal antibody to DinJ–YafQ. We detected YafQ predominantly in the 70S fractions, but also in the 50S fractions. YafQ was not detected in either the polysome fractions or the two peaks sedimenting in the 30S region. These results suggested that YafQ interacts with the ribosome through association with the 50S ribosomal subunit. To verify this result, we repeated the ribosome profile analysis under low-magnesium conditions to dissociate the monosome into 50S and 30S particles and demonstrated that YafQ sedimented exclusively with 50S fractions (Fig. 5C). DinJ antitoxin was not associated with the ribosome fractions. In addition, we did not detect free YafQ in the soluble fractions, indicating that most or all of the free YafQ is ribosome-associated. We concluded that YafQ primarily interacts with the 70S monosome in vivo, and it appears to be assembled with the monosome through interaction with the 50S ribosomal subunit.

Notably, YafQ was not present in the additional peak that overlapped with the 30S ribosomal subunit peak. When the ribosome profile fractions from YafQ induced cells were silver stained, the protein composition of the 30S ribosomal peak was comparable in both YafQ-induced and uninduced samples. However, while the band intensities of most ribosomal proteins appeared similar in both peaks, some bands were either absent or markedly lighter in the lower density peak (data not shown). Our data suggest that the extra peak comprises a 30S ribosomal subunit precursor that is likely a by-product of a ribosomal maturation defect resulting from the YafQ overexpression. In fact, we later determined that YafQ expression leads to accumulation of 17S rRNA precursor (data not shown), further supporting the notion that YafQ expression somehow perturbs the ribosome maturation process.

YafQ(H87Q) abolishes toxicity but not ribosome binding

We have demonstrated that YafQ mediates sequence-specific and frame-dependent mRNA cleavage at 6AAA – G/A6. The potent activity of YafQ in vitro (Figs 2A and 3) suggests that it mediates mRNA cleavage while it is associated with the ribosome, which acts as a platform to deliver YafQ to the mRNA and position it in a manner to impart precision such that mRNA is cleaved at the ribosomal A site when 6AAA – G/A6 is encountered within the first ~60 codons. However, there is a formal possibility that
YafQ enhances the intrinsic mRNA cleavage activity of the ribosome (Hayes and Sauer, 2003) as suggested for RelE (Pedersen et al., 2003). To help differentiate whether the cleavage activity of the YafQ associated-ribosome complex is due to YafQ or the ribosome (by YafQ-mediated enhancement of the intrinsic cleavage activity of the ribosome) we attempted to create a catalytically inactive form of YafQ. Comparison of the protein sequence of YafQ to its two family members revealed that histidine 87 of YafQ aligned to the highly conserved arginines in RelE and YoeB known to be important for toxin activity (Motiejunaite et al., 2007). Therefore, we constructed a YafQ(H87Q)-pBAD33 plasmid and examined the growth rate upon induction of YafQ(H87Q). Unlike wild-type YafQ, induction of YafQ(H87Q) no longer resulted in growth arrest (Fig. 6A), indicating that this mutant had lost the ability to cleave mRNA, accounting for its non-toxic phenotype.

To distinguish whether the loss of mRNA cleavage was due to a loss of YafQ(H87Q) enzymatic activity or due to an inability of the mutant to bind to ribosome and possibly enhance intrinsic ribosomal cleavage activity, we repeated our ribosome profile analyses with extracts from YafQ(H87Q)-induced cells. Strikingly, both characteristic features of YafQ toxicity on the ribosome profile were now absent: polysome levels were not diminished, nor did we observe the additional peak sedimenting adjacent to the 30S peak (Fig. 6C and D). Finally, to test whether YafQ(H87Q) retained its ability to associate with the ribosome, we subjected the fractions from the YafQ(H87Q)-induced panel to Western blotting analysis. YafQ(H87Q) retained its ability to interact with both the 70S and 50S particles (Fig. 6D).

In conclusion, the YafQ(H87Q) mutant data suggest that: (i) the lack of a toxic phenotype for the mutant was upon expression of YafQ(H87Q) (Fig. 6B), indicating that this mutant had lost the ability to cleave mRNA, accounting for its non-toxic phenotype.

To distinguish whether the loss of mRNA cleavage was due to a loss of YafQ(H87Q) enzymatic activity or due to an inability of the mutant to bind to ribosome and possibly enhance intrinsic ribosomal cleavage activity, we repeated our ribosome profile analyses with extracts from YafQ(H87Q)-induced cells. Strikingly, both characteristic features of YafQ toxicity on the ribosome profile were now absent: polysome levels were not diminished, nor did we observe the additional peak sedimenting adjacent to the 30S peak (Fig. 6C and D). Finally, to test whether YafQ(H87Q) retained its ability to associate with the ribosome, we subjected the fractions from the YafQ(H87Q)-induced panel to Western blotting analysis. YafQ(H87Q) retained its ability to interact with both the 70S and 50S particles (Fig. 6D).

In conclusion, the YafQ(H87Q) mutant data suggest that: (i) the lack of a toxic phenotype for the mutant was upon expression of YafQ(H87Q) (Fig. 6B), indicating that this mutant had lost the ability to cleave mRNA, accounting for its non-toxic phenotype.

To distinguish whether the loss of mRNA cleavage was due to a loss of YafQ(H87Q) enzymatic activity or due to an inability of the mutant to bind to ribosome and possibly enhance intrinsic ribosomal cleavage activity, we repeated our ribosome profile analyses with extracts from YafQ(H87Q)-induced cells. Strikingly, both characteristic features of YafQ toxicity on the ribosome profile were now absent: polysome levels were not diminished, nor did we observe the additional peak sedimenting adjacent to the 30S peak (Fig. 6C and D). Finally, to test whether YafQ(H87Q) retained its ability to associate with the ribosome, we subjected the fractions from the YafQ(H87Q)-induced panel to Western blotting analysis. YafQ(H87Q) retained its ability to interact with both the 70S and 50S particles (Fig. 6D).

In conclusion, the YafQ(H87Q) mutant data suggest that: (i) the lack of a toxic phenotype for the mutant was
due to loss of the enzymatic activity of YafQ(H87Q) and not due to its inability to bind the ribosome; (ii) YafQ does not enhance the intrinsic mRNA cleavage activity of the ribosome; (iii) YafQ mediates sequence-specific and frame-dependent mRNA cleavage and the ribosome serves to deliver YafQ to the mRNA; and (iv) H87 is essential for the catalytic activity of YafQ. The notion that the endoribonuclease activity exhibited by the YafQ-ribosome complex is derived from YafQ is substantiated by our data demonstrating that purified YafQ was able to cleave RNA in vitro (Fig. 2A).

LexA and the DinJ–YafQ complex bind to the dinJ–yafQ palindrome

Although MazEF and RelBE have been implicated in the stringent response (Masuda *et al*., 1993; Aizenman *et al*., 1996; Christensen and Gerdes, 2003; 2004; Pedersen *et al*., 2003), in general, the physiological roles and specific triggers of individual TA module transcription are not well understood (Tsilibaris *et al*., 2007). Palindromes are characteristically present in TA module promoters — they are bound by the TA complex or the antitoxin alone to auto-regulate the operon (Gerdes *et al*., 2005). The palindrome upstream of *dinJ–yafQ* is unique among known *E. coli* proteic TA modules because this sequence has similarity to a consensus LexA binding site (Lewis *et al*., 1994; Fernandez De Henestrosa *et al*., 2000), suggesting that this module is regulated by DNA damage (Fig. 7A). In fact, for many years its physiological significance was dismissed because electrophoretic mobility shift assay (EMSA) and Northern experiments published in did not show a LexA gel shift nor support LexA regulation of *dinJ–yafQ* respectively (Fernandez De Henestrosa *et al*., 2000).

We used an EMSA assay to determine if DinJ–YafQ(His)₆ was able to bind to a dsDNA fragment corresponding to the upstream palindrome sequence of the *dinJ–yafQ* module (Fig. 7A). DinJ–YafQ(His)₆ complex was able to bind its upstream palindrome, supporting a role for this TA complex in autoregulation characteristic of...
TA modules. LexA(His)$_6$ was also able to bind the dinJ–yafQ palindrome, and this binding was supershifted by the addition of a LexA antibody (Fig. 7B), consistent with recent genome-wide in vivo chromatin immunoprecipitation experiments (Wade et al., 2005). We did not observe LexA(His)$_6$ binding to the relBE palindrome (data not shown) which suggested that (i) the binding of LexA to the dinJ–yafQ palindrome we observed was specific to the dinJ–yafQ module and (ii) the in vivo regulation of dinJ–yafQ is likely distinct from its family members. Demonstration of either LexA or the DinJ–YafQ binding to the LexA box upstream of the dinJ–yafQ module also suggests that competition occurs and both contribute to its repression and autoregulation.

The LexA repressor plays a central role in initiating the SOS response upon DNA damage (Shinagawa, 1996), suggesting that regulation of dinJ–yafQ transcription is also linked to DNA damage. We exposed wild-type cells to increasing levels of mitomycin C (an antibiotic that acts by alkylation of DNA leading to cross-linking of complementary strands), purified total RNA, and performed a reverse transcription polymerase chain reaction (PCR) to determine if the induction of DNA damage by mitomycin C affected the steady-state levels of dinJ and yafQ mRNAs. Our results revealed a modest, but consistent, increase in the steady-state mRNA levels of yafQ (Fig. 7C) but not dinJ (data not shown) in wild-type cells after mitomycin C treatment. Our findings are consistent with microarray analysis of E. coli transcripts after UV treatment (Courcelle et al., 2001). The steady-state level of dinJ was unchanged while levels of yafQ increased less than twofold. In fact, many SOS response genes are not upregulated more than twofold.

Next, we examined if a ΔdinJ–yafQ E. coli strain exhibited differences in recovery after induction of DNA damage relative to wild-type cells. We employed two standard methods, exposure to UV irradiation and mitomycin C treatment. Using several standard protocol variations (time, concentration and media) for mitomycin C treatment, we did not observe a consistent and substantial difference in recovery of colony forming units between the wild type and ΔdinJ–yafQ strain (data not shown).

Discussion

Free-living bacterial cells are equipped with a remarkable repertoire of stress survival mechanisms. Although the physiological role of chromosomal TA systems/modules is somewhat controversial (Tsilibaris et al., 2007), the majority of evidence supports the hypothesis whereby they enhance cell survival during and after short pulses of stress routinely encountered when free-living bacteria exist in their native environments. It is also possible that TA systems are instrumental in the elimination of cells damaged after stress conditions to maintain a healthy population of cells (Engelberg-Kulka et al., 2004; 2006). In this work, we have presented evidence that the E. coli chromosomally encoded operon at the dinJ–yafQ locus constitutes a genuine TA module and uncovered the mechanism of action of the YafQ toxin.

Northern analysis revealed rapid and complete degradation of three mRNA transcripts upon YafQ expression.
and Western analysis demonstrated sedimentation of YafQ with 70S monosomes and the 50S ribosomal subunit. Therefore, YafQ targets the cellular population of actively translating mRNA for cleavage through interaction with the ribosome (mRNA synthesis and translation are coupled in bacteria, precluding the existence of free, intact mRNAs). Primer extension analyses enabled the identification of a reading frame-dependent recognition sequence for YafQ cleavage; 5′AAA – (G/A)3. The primary YafQ cleavage site was position (codon +2) for two independent transcripts (lpp and ompA), i.e. 5′ATG – AAA – (G/A)XX. Interestingly, ompF lacked the consensus in the beginning of the transcript and, as a consequence, no major cleavage was detected at position +2. However, we mapped both major cleavage sites to the first and second incidence of the in-frame 5′AAA – (G/A)3 sequence. Although we used primers that covered most of ompF, and all of ompA and lpp (except for the 3′ ends where primer annealed), we did not detect major cleavage products beyond 60 codons/180 nucleotides from the translation start.

Translation initiation is thought to be the rate-limiting step in protein synthesis and several ways of regulating it are employed. Here we demonstrate that ribosome-associated YafQ instead targets the elongation phase. In some cases YafQ acts just after transition of the initiation complex to an elongation complex by cleaving mRNA at its +2 codon (when the initiator codon is bound to the P site and the second codon is positioned at the A site). When the consensus cleavage sequence is not represented early in the mRNA, YafQ appears to remain associated with the ribosome because cleavage occurs once the translation apparatus reaches an in-frame recognition sequence further downstream.

What is the fate of the mRNA transcript after YafQ cleavage in vivo? Northern analysis demonstrated a rapid and complete degradation of lpp, ompA and ompF mRNAs upon YafQ induction; primer extension analyses revealed only two major cut sites near the 5′ end (within 180 nucleotides) of all three mRNAs. We can reconcile these results by proposing that cleavage is only detected early in the mRNA because YafQ generally cleaves mRNA with high efficiency. Therefore, from the total pool of a specific mRNA (such as ompA), most or all of those mRNAs that were not cleaved at their first consensus sequence, are then cut at the second recognition site by the YafQ-containing elongation complex. As mentioned earlier, subsequent degradation of mRNAs cut by YafQ is likely accelerated by the cellular mRNA degradation machinery (Carpousis, 2007). The extremely rapid rate of mRNA degradation documented by Northern analysis also suggests that mRNA cleaved by YafQ is released from the ribosome (and the protection from degradation it provides) after cleavage. A released transcript would also allow the recycling of ribosomes and tRNAs so they can be directed to translation of SOS response mRNAs (if YafQ involvement in the SOS response is definitively demonstrated in the future).

Interestingly, the AAA codon is the most common codon at +2 in E. coli, represented in approximately 10% of all mRNAs containing AUG or GUG start codons (Stenstrom et al., 2001). Some reports have also correlated AAA at +2 with high translation initiation efficiency (Stenstrom et al., 2001; Brock et al., 2007). Purine-rich sequences, especially adenine-rich ones, are correlated with single-strand regions in 16S rRNA (Wang and Hickey, 2002), so it is thought that this may contribute to higher translational efficiency when A-rich sequences are found 3′ of the translation start site. The presence of the AAA codon at +2 is also overrepresented in secretory proteins (Zalucki et al., 2007), consistent with its presence in the ompA mRNA we studied. Therefore, the YafQ cleavage recognition site may represent an adaptation designed to target the maximal number of transcripts for degradation given the finite levels of free YafQ toxin available under physiological stress (perhaps SOS) conditions.

There are fundamental mechanistic differences between YafQ and its family member RelE. RNA cleavage by RelE is observed in cell-free extracts, but not with purified RelE protein combined with RNA. Therefore, the cleavage activity attributed to RelE has been attributed to the endonucleolytic activity of the ribosome (Hayes and Sauer, 2003; Pedersen et al., 2003; Sunohara et al., 2004a,b). In contrast, we demonstrated that YafQ exhibits RNA cleavage activity in vitro, with some degree of sequence specificity at low enzyme/substrate ratios. These data are further supported by our identification of a key catalytic residue of YafQ, H87, whose substitution with a glutamine residue abolishes mRNA cleavage and toxicity but does not interfere with the association of YafQ and the ribosome. This feature makes YafQ unique among E. coli TA toxins and distinct from family member RelE.

Based on our findings, we propose the following model of YafQ activity in E. coli cells. DinJ−YafQ is expressed as a stable protein complex from the dinJ−yafQ locus. DinJ is degraded by proteases after the physiological switch is triggered (currently unknown, possibly the SOS response), leaving YafQ free to interact with 70S ribosomes or free 50S ribosomal subunits. YafQ induces cleavage of the mRNA transcript at the frame-dependent 5′AAA – G/A3 recognition site until the mRNA pool is depleted. mRNA cleavage efficiency must be high because YafQ-mediated cleavage was not documented past the 60th codon, even in mRNAs composed of >300 codons. Depletion of the mRNA pool also occurs quickly, because steady-state mRNA levels drop rapidly to unde-
tectable levels. Finally, YafQ mRNA cleavage leads to growth arrest because these transcripts (including those encoding essential proteins) are not translated.

Although the dinJ–yafQ operon is regulated by LexA, the role of this module in the SOS response is unclear because we did not detect differences in recovery of colony forming units after UV stress or mitomycin C treatment of the ∆dinJ–yafQ strain compared with wild type. Another gene pair that appears to be a TA system, yafN–yafQ, is harboured within the dinB–yafN–yafO–yafP operon and is just downstream of dinJ–yafQ (McKenzie et al., 2003). dinB (encoding DNA polymerase IV) is strongly induced (7.7-fold) after UV treatment, as are the yafN antitoxin and yafO toxin genes, 2.7- and 3.6-fold respectively (Courcelle et al., 2001). TA system antitoxins are susceptible to proteases induced upon stress, and our data suggest that DinJ is targeted by both Lon and CipXP (Fig. 1D); therefore, YafQ toxin should be in excess after UV stress. As TA toxins act by reversibly inhibiting cell growth, YafQ is implicated in facilitating the temporary growth arrest that is required to repair DNA (Opperman et al., 1999). However, the functions of TA toxins YafQ and YafO may be redundant because checkpoint control after DNA damage (Opperman et al., 1999) is crucial to maintenance of genome integrity, so when analysing the response to stress using the ∆dinJ–yafQ strain, possible YafQ involvement in DNA damage checkpoint control may be masked by the presence of functional YafO. In fact, in addition to being regulated by LexA, two features of YafQ-mediated growth arrest are consistent with its involvement in the SOS response. First, some translation still occurs when YafQ fully arrests growth (Fig. 1E), in contrast to the growth arrest facilitated by other TA toxins that comprehensively degrade mRNA (e.g. MazF and CipBK). The SOS response requires some level of transcription to activate the 50 plus LexA regulated genes. Second, steady-state transcript levels of yafQ increase after exposure to DNA damaging agent mitomycin C (Fig. 7C; Courcelle et al., 2001); LexA and RNA polymerase occupancy at the dinJ–yafQ LexA box using chromatin immunoprecipitation-chip analysis revealed the loss of LexA binding and a twofold increase in RNA polymerase occupancy after UV irradiation (Wade et al., 2005). More detailed analyses of YafQ targets and elucidation of YafO function should shed light on the significance of LexA regulation of the operons containing these two TA toxins.

Experimental procedures

Strains, plasmids and reagents

The E. coli strains BL21(DE3) (F-ompT hsdSb(r−,m−) dom gal (DE3) tonA) (Novagen), and BW25113 (lacIqB14 λac-Z3416 hsdR514 ΔaraBAD4533 ΔrhaBAD6645) (Datsenko and Wanner, 2000) were used for all protein expression and toxicity studies. E. coli K-12 Mach1 T1 cells (λrecA1398 endA1 tonA1 ΔlacZΔM15 ΔlacX74 hsdR30 (r−, m−)) (Invitrogen) were used for all cloning experiments throughout the section. E. coli K-12 DH5α (F (Φ80lacZΔM15 ΔlacZYA-argF) U169 recA1 endA1 hsdR17 (r−, m−) phoA supE44 λ thi-1 gyrA96 relA1) genomic DNA served as the PCR template to clone out the dinJ–yafQ module, yafQ, dinJ and lexA. The E. coli BW25113 strains that carried deletions of the mazEF, cipBK, recA and yafQ modules were also generous gifts from Qian Tan and Yoshi Yamaguchi of the Inouye laboratory. The E. coli BW25113 strains that carried individual deletions of the lon, cipP, cipA or cipX loci were also generous gifts of the Inouye lab. Plasmids used in this study are listed in Table 1. All bacterial liquid cultures were grown in Luria Broth (LB) media at 37°C, unless otherwise noted. The working concentrations of ampicillin and chloramphenicol were 34 μg ml⁻¹ and 25 μg ml⁻¹ respectively. The DNA sequences of PCR fragments used for cloning were confirmed by automated DNA sequence analysis. Polyclonal antibodies used for Western analysis were raised to the DinJ–YafQ complex (Pocono Rabbit Farm and Laboratory).

Table 1. Plasmids.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dinJ+yaf-pET21c</td>
<td>dinJ-yafQ module in pET21c (Ndel/XhoI)</td>
</tr>
<tr>
<td>dinJ-yaf(His)₆-pET21c</td>
<td>dinJ-yaf module (His)₆-tagged in pET21c (Ndel/XhoI)</td>
</tr>
<tr>
<td>dinJ–yaf-pBAD33</td>
<td>dinJ-yafQ module in pBAD33 (XbaI/HindIII)</td>
</tr>
<tr>
<td>yafQ-pBAD33</td>
<td>yafQ in pBAD33 (XbaI/HindIII)</td>
</tr>
<tr>
<td>yafQ-pET21c</td>
<td>yafQ in pET21c (Ndel/EcoRI)</td>
</tr>
<tr>
<td>dinJ-pNiII</td>
<td>dinJ in pNiII (EcoRI/BamHI)</td>
</tr>
<tr>
<td>lexA-pET21c</td>
<td>lexA in pET21c (Ndel/BamHI)</td>
</tr>
<tr>
<td>lexA(His)₆-pET21c</td>
<td>lexA (His)₆-tagged in pET21c (Ndel/XhoI)</td>
</tr>
</tbody>
</table>

Antitoxin stabilization assays

E. coli BW25113, Δlon, ΔcipP, ΔcipA and ΔcipX cells harbouring dinJ-pNiII were grown in LB media to mid-exponential phase (OD₆₀₀ = 0.3–0.4). Cultures were then induced with 1 mM IPTG for a period of 10 min before treatment with 150 μg ml⁻¹ Hygromycin B. Aliquots were taken from each strain at 0, 5, 1, 2, 3, 4 and 5 h post induction, and cellular lysates were run on a 15% SDS-PAGE gel followed by Western blotting analysis.

Recombinant DinJ and YafQ

The dinJ–yafQ(His)₆-pET21c and lexA(His)₆-pET21c constructs were transformed into BL21(DE3) cells, and induced with 1 mM IPTG for a period of 4 h. Cells were lysed using a French Press, and the protein extracts were applied to a Ni-NTA resin (Qiagen). The columns were washed with wash buffer containing 20 mM imidazole, and each protein was eluted from the column with buffer containing 250 mM imidazole.
To separate the respective components of the DinJ–YafQ protein complex, the complex was denatured with 6 M guanidine–HCl and applied to an Ni-NTA column, resulting in the release of purified DinJ from the complex and the retention of YafQ(His)6 on the Ni-NTA resin. The bound YafQ(His)6ompA3′ompF′ (Fig. 3B).

et al. in vitro

myafQompF′yafQ value reached 0.4, the culture was split into equal portions and arabinose was added to the other as a control. Culture samples were removed at 0, 10, 20, 30, 60 and 90 min post induction, and total RNA was extracted as described above. Primer extensions in Fig. 4 were carried out using radioactively labelled primers as previously described (ompA2; 5′-CGGCGGCTTTGTTGAGGGAACC-3′; ompF: 5′-AAACCAAGACGGGCAA TAGGTC-3′; lpp: 5′-TTACTTGCGGTATTTAGTAGCC-3′; ompA3, 5′-GGTAA CCAGTTTAGCGGTCAGTTG-3′; ompA4, 5′-ACACCAGGGCCTACGATGCGGTCGGTGTAACCC-3′; and ompA5, 5′-TGATGCGGTCGGTGTAACCC-3′; ompA6, 5′-TGCAGTGTCAACGTCGTCTGATTACACC-3′). The DNA sequencing ladder used to assess cleavage sequences was prepared with a Sequenase Version 2.0 DNA Sequencing Kit (USB) using the respective oligonucleotides for primer extension reactions. The sequencing ladder and the primer extension products were separated on a 6% polyacrylamide/8 M urea sequencing gel and visualized by autoradiography.

Ribosome profile analysis

E. coli BW25113 cells containing yafQ-pBAD33 or yafQ(H87Q)-pBAD33 were grown in LB media at 37°C. At an OD600 of 0.4, the culture was split into two flasks of 50 ml each. Arabinose was added to a final concentration of 0.2%, while an equal volume of water was added to the other as a control. Culture samples were removed at 0, 10, 20, 30, 60 and 90 min post induction, and total RNA was extracted as described above. Primer extensions in Fig. 4 were carried out using radioactively labelled primers as previously described (ompA2; 5′-CGGCGGCTTTGTTGAGGGAACC-3′; ompF: 5′-AAACCAAGACGGGCAA TAGGTC-3′; lpp: 5′-TTACTTGCGGTATTTAGTAGCC-3′; ompA3, 5′-GGTAA CCAGTTTAGCGGTCAGTTG-3′; ompA4, 5′-ACACCAGGGCCTACGATGCGGTCGGTGTAACCC-3′; and ompA5, 5′-TGATGCGGTCGGTGTAACCC-3′; ompA6, 5′-TGCAGTGTCAACGTCGTCTGATTACACC-3′). The DNA sequencing ladder used to assess cleavage sequences was prepared with a Sequenase Version 2.0 DNA Sequencing Kit (USB) using the respective oligonucleotides for primer extension reactions. The sequencing ladder and the primer extension products were separated on a 6% polyacrylamide/8 M urea sequencing gel and visualized by autoradiography.

Ribosome profile analysis

E. coli BW25113 cells containing yafQ-pBAD33 or yafQ(H87Q)-pBAD33 were grown in 200 ml of LB media at 37°C. At an OD600 of 0.4, the culture was split into two flasks of 50 ml each. Arabinose was added to a final concentration of 0.2% for one of the cultures. After 30 min, cells were pelleted at 15 000 r.p.m. for 20 min in a Sorvall SA-600 rotor and resuspended in 1 ml of polysome profile buffer (p.p.b.; 10 mM Tris pH 7.5, 50 mM NaCl, 10 mM MgCl2, 5 mM DTT). Cells were frozen in liquid nitrogen and thawed on ice, and 10 μl of 10 mg ml−1 lysozyme (Sigma) was added to each sample. Five additional freeze-thaw steps were performed and 150 μl of the resulting extract was layered onto a 5–40%
Electrophoretic gel shift assays

Electrophoretic mobility shift assays were performed essentially as described (Golemis and Brent, 1992). Briefly, complementary oligonucleotides (5′-CAGCTGAATAAA TATACAGCAGGGTACCCCA-3′ and its complement) of the 5′ sequence upstream of the open reading frame of dinJ were synthesized (the proposed regulatory upstream palindrome is in bold-face type), annealed at 65°C for 2 min and allowed to cool to room temperature overnight. The annealed oligonucleotides were radiolabelled and incubated with purified protein (either DinJ–YafQ(His)6, DinJ, YafQ(His)6, or LexA–(His)6) for 30 min at 30°C in the reaction buffer (4% glycerol, 1 mM EDTA, 10 mM Tris HCl pH 7.6, 5 mM CaCl2, 100 mM NaCl, 10 mM β-ME). LexA antibody (a generous gift from Erica Golemis, Fox Chase Cancer Center) was added to the LexA reactions to demonstrate LexA binding specificity. EMSA reactions were run on a native 6% polyacrylamide gel and visualized by autoradiography.

Reverse transcriptase-PCR

E. coli BW25113 cells were grown in LB media until exponential phase (OD600 = 0.3–0.4). Mitomycin C (or an equal volume of water) was added to the growing culture in a range of concentrations from 0 μg ml–1 to 1 μg ml–1, and allowed to incubate for 1 h. Total RNA was isolated from these cultures as described above, and reverse transcriptase reactions were carried out on equal amounts of total RNA as described above with yafQ primer 5′-CGGAATTTCTTACCCAAA GAGGC-3′. The reverse transcriptase was then heat inactivated for 10 min at 75°C, and all samples were treated with DNase-free RNase for 10 min. These reactions were then used as template for the PCR reaction using the following primers to amplify full-length yafQ, 5′-GGAAATCTCATT GATGATCAAAGGATATTG-3′ and 5′-CGGAATTTCTTAC CAAAGAGCGC-3′. PCR reactions were then run on 0.8% agarose gels and stained with ethidium bromide.

Acknowledgements

This work was funded in part by RO1 Grant GM 74097 from the National Institutes of Health (NIH) to N.A.W., the Northeast Structural Genomics Consortium U54 grant (GM74958) entitled Structural Genomics of Eukaryotic Domain Families (Gaetano Montelione-Rutgers University, PI: M.I. and N.A.W. are subproject PI and Co-PI respectively) from the NIH and Takara Bio, Inc. Angela Cook was partially supported by the Bernard Kof-Wayne Umbret fellowship from the Microbiology and Molecular Genetics Graduate Program at Rutgers University. Meredith H. Prysak was supported by the T32 Training Grant, Virus–Host Interactions in Eukaryotic Cells AI07403 from the NIH-NIAID awarded to Sidney Pestka.

Note Added in Proof

A manuscript describing the mechanism of action of E. coli YoeB was accepted for publication in J Biol Chem while this work was in the proof stage.

References

Supporting information

Additional supporting information may be found in the online version of this article.

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.