Troian EA, Maldonado HM,  Chauhan U., Barth VC, Woychik NA
Mycobacterium abscessus VapC5 toxin potentiates evasion of antibiotic killing by ribosome overproduction and activation of multiple resistance pathways
Nature Communications, 14:3705 (2023)

Chauhan U, Barth VC, Woychik NA

tRNAfMet Inactivating Mycobacterium tuberculosis VapBC Toxin-Antitoxin Systems as Therapeutic Targets
Antimicrobial Agents and Chemotherapy, 66: e0189621 (2022)

Barth, VC, Chauhan, U, Zeng, J, Su, X, Zheng, H, Husson, RN, Woychik, NA
Mycobacterium tuberculosis VapC4 toxin engages small ORFs to initiate an integrated oxidative and copper stress response
Proceedings of the National Academy of Sciences 118: e2022136118 (2021)

Barth VC, Woychik NA.
The sole Mycobacterium smegmatis MazF toxin targets tRNA-Lys to impart highly selective, codon-dependent proteome reprogramming
Frontiers in Genetics, 10:1356 (2020)
 Abstract |  PDF

Barth VC, Zeng JM, Vvedenskaya IO, Ouyang M, Husson RN, Woychik NA.
Toxin-mediated ribosome stalling reprograms the Mycobacterium tuberculosis proteome
Nature Communications, 10:3035 (2019)
 Abstract |  PDF

Cintrón M, Zeng JM, Barth VC, Cruz JW, Husson RN, Woychik NA.
Accurate target identification for Mycobacterium tuberculosis endoribonuclease toxins requires expression in their native host
Scientific Reports, 9:5949 (2019)
 Abstract |  PDF

Schifano JM, Woychik NA.
Cloaked dagger: tRNA slicing by an unlikely culprit
RNA Biology, 14:15-19 (2017)
 Abstract |  PDF

Schifano JM, Cruz JW, Vvedenskaya IO, Edifor R, Ouyang M, Husson RN, Nickels BE, Woychik NA.
tRNA is a new target for cleavage by a MazF toxin
Nucleic Acids Res. 44:1256-70 (2016)
 Abstract |  PDF

Cruz JW, Woychik NA.
tRNAs taking charge
Pathogens and Disease 74:ftv117 (2016)
 Abstract |  PDF

Cruz JW, Sharp JD, Hoffer ED, Maehigashi T, Vvedenskaya IO, Konkimalla A, Husson RN, Nickels BE, Dunham CM, Woychik NA.
Growth-regulating Mycobacterium tuberculosis VapC-mt4 toxin is an isoacceptor-specific tRNase.
Nat. Commun. 6:7480 (2015)
  Abstract | PDF

Cruz JW, Woychik NA.
Teaching Fido new ModiFICation tricks.
PLoS Pathog.10:e1004349 (2014)
 Abstract |  PDF

Schifano JM, Vvedenskaya IO, Knoblauch JG, Ouyang M, Nickels BE, Woychik NA.
An RNA-seq method for defining endoribonuclease cleavage specificity identifies dual rRNA substrates for toxin MazF-mt3.
Nat. Commun. 5:3538 (2014)
 Abstract |  PDF

Schifano JM, Woychik NA.
23S rRNA as an a-Maz-ing new bacterial toxin target.
RNA Biol. 11:101-5 (2014)
 Abstract |  PDF

Cruz JW, Rothenbacher FP, Maehigashi T, Lane WS, Dunham CM, Woychik NA.
Doc toxin is a kinase that inactivates elongation factor Tu
J. Biol. Chem. 289:7788-98 (2014)
 Abstract |  PDF

Schifano JM, Edifor R, Sharp JD, Ouyang M, Konkimalla A, Husson RN, Woychik NA.
Mycobacterial toxin MazF-mt6 inhibits translation through cleavage of 23S rRNA at the ribosomal A site
Proc. Natl. Acad. Sci. U S A 110:8501-6 (2013)
 Abstract |  PDF

Rothenbacher, F. P., Suzuki, M., Hurley, J. M., Montville, T. J., Kirn, T. J., Ouyang, M. and Woychik, N. A.
Clostridium difficile MazF toxin exhibits selective, not global, mRNA cleavage
J. Bact. 13, 3464-74 (2012)
 Abstract |  PDF

Sharp J. D., Cruz J. W., Raman S., Inouye M., Husson R. N., Woychik N. A.
Growth and translation inhibition through sequence specific RNA binding by a Mycobacterium tuberculosis VapC toxin
J. Biol. Chem. 287, 12835-47 (2012)
 Abstract |  PDF

Hurley, J. M., Cruz, J. W., Ouyang, M. and Woychik, N. A.
Bacterial toxin RelE mediates frequent codon-independent mRNA cleavage from the 5′ end of coding regions in vivo
J. Biol. Chem. 286, 14770-14778 (2011)
 Abstract |  PDF

Zhu, L., Sharp, J. D., Kobayashi, H., Woychik, N. A., Inouye, M.
Noncognate Mycobacterium tuberculosis toxin-antitoxins can physically and functionally interact
J. Biol. Chem. 285, 39732-8 (2010)
Abstract |  PDF

Arbing, M. A., Handelman, S. K., Kuzin, A. P., Verdon, G., Wang, C., Su, M., Rothenbacher, F. P., Abashidze, M., Liu, M., Hurley, J. M., Xiao, R., Acton, T., Inouye, M., Montelione, G. T., Woychik, N. A. and Hunt, J.F.
Crystal structures of Phd-Doc, HigA, and YeeU establish multiple evolutionary links between microbial growth-regulating toxin and antitoxin (TA) systems
Structure 18, 996-1010 (2010)
Abstract |  PDF

Hurley, J. M. and Woychik, N. A.
Bacterial toxin HigB associates with ribosomes and mediates translation-dependent mRNA cleavage at A-rich sites.
J. Biol. Chem. 284, 18605-13 (2009)
 Abstract |  PDF

Prysak, M. H., Mozdzierz, C. J., Cook, A. M., Zhu, L., Zhang, Y., Inouye, M. and Woychik, N. A.
Bacterial toxin YafQ is an endoribonuclease that associates with the ribosome and blocks translation elongation through sequence-specific and frame-dependent mRNA cleavage.
Mol. Microbiol. 71, 1071-87 (2009)
 Abstract |  PDF

Liu, M., Zhang, Y., Inouye, M. and Woychik, N. A.
Bacterial Addiction Module Toxin Doc Inhibits Translation Elongation through its Association with the 30S Ribosome.
Proc. Natl. Acad. Sci. USA 105, 5885-5890 (2008)
 Abstract |  PDF

Suzuki, M., Roy, R., Zheng, H., Woychik, N. A. and Inouye, M.
Bacterial bioreactors for high yield production of recombinant protein.
J. Biol. Chem 281, 37559-37565 (2006)
Abstract |  PDF

Suzuki, M., Zhang, J., Liu, M., Woychik, N. A. and Inouye, M.
Single Protein Production in Living Cells Facilitated by an mRNA Interferase
Mol. Cell 16, 253-261 (2005)
 Abstract |  PDF
(highlighted in The Scientist, Chemical Engineering News and Genetic Engineering News)

Tan, Q., Prysak, M. H. and Woychik, N. A.
Loss of the Rpb4/Rpb7 subcomplex in a mutant form of the Rpb6 subunit shared by RNA polymerases I, II and III.
Mol. Cell. Biol. 9, 3329-3338 (2003)

Woychik, N. A.
RNA polymerases and the eukaryotic transcription machinery
Encyclopedia of the Human Genome, Nature Publishing Group, London (2003), online textbook at

Woychik N. A., Hampsey M.
The RNA polymerase II machinery: structure illuminates function.
Cell 108, 453-463 (2002)

Miyao T., Barnett J. D. and Woychik N. A.
Deletion of the RNA polymerase subunit RPB4 acts as a global, not stress-specific, shut-off switch for RNA polymerase II transcription at high temperatures.
J. Biol. Chem. 276, 46408-46413 (2001)

Woychik, N. A. and Reinberg, D.
RNA polymerases: subunits and functional domains.
Encyclopedia of Life Sciences, Nature Publishing Group, London
(2002) online textbook at

Tan, Q., Li, X., Sadhale, P. P., Miyao, T. and Woychik, N. A.
Multiple mechanisms of suppression circumvent transcription defects in an RNA polymerase mutant.
Mol. Cell. Biol. 20, 8124-8133 (2000)

Woychik, N. A.
TA-TAAA!! Transcription unveiled.
Trends Biochem. Sci. 25, 404 (2000)

Tan, Q., Linask, K. L., Ebright, R. H. and Woychik, N. A.
Activation mutants in yeast RNA polymerase II subunit RPB3 provide evidence for a structurally conserved surface required for activation in eukaryotes and bacteria.
Genes Dev. 14, 339-348 (2000)

Miyao, T. and Woychik, N. A.
RNA polymerase subunit RPB5 plays a role in transcriptional activation.
Proc. Natl. Acad. Sci. 95, 15281-15286 (1998)

Woychik, N. A.
Fractions to functions: RNA polymerase thirty years later.
Cold Spring Harbor Symp. Quant. Biol. Volume LXIII, 311-317 (1998)

McKune, K., Moore, P., Hull, M. W. and Woychik, N. A.
Six human RNA polymerase subunits functionally substitute for their yeast counterparts in vivo.
Mol. Cell. Biol. 15, 6895-6900 (1995)

Khazak, V., Sadhale, P. P., Woychik, N. A., Brent, R. and Golemis, E. A.
Human RNA polymerase II subunit hsRPB7 functions in yeast and influences stress survival and cell morphology.
Mol. Biol. Cell 6, 759-775 (1995)

Hull, M. W., McKune, K. and Woychik, N. A.
RNA polymerase subunit RPB9 is required for accurate start site selection.
Genes Dev. 9, 481-490 (1995)

Sadhale, P. P. and Woychik, N. A.
C25, an essential RNA polymerase III subunit related to the RNA polymerase II subunit RPB7.
Mol. Cell. Biol. 14, 4155-4159 (1994)

McKune, K. and Woychik, N. A.
Halobacterium S9 operon contains two genes encoding proteins homologous to subunits shared by eukaryotic RNA polymerases I, II, and III.
J. Bacteriol. 176, 4754-4756 (1994)

McKune, K. and Woychik, N. A.
Functional substitution of an essential yeast RNA polymerase subunit by its highly conserved mammalian counterpart.
Mol. Cell. Biol. 14, 4155-4159 (1994)

Woychik, N. A.
Regulating the regulators.
Trends Biochem. Sci. 19, 99-142 (1994)

Woychik, N. A., and Young, R. A.
Exploration of RNA polymerase II structure and function.
in: Transcription (R. Conaway and J. Conaway, eds.) Raven Press, New York, 227-242, (1994)

McKune, K., Richards, K. L., Edwards, A. M., Young, R. A. and Woychik, N. A.
RPB7, one of two dissociable subunits of RNA polymerase II, is essential for yeast cell viability.
Yeast, 9, 295-299 (1993)

Woychik N. A., Young R. A.
RNA polymerase II subunit RPB10 is essential for yeast cell viability.
J Biol Chem. 1993 Jun 5;268(16):12230.
No abstract available.

Woychik, N. A., McKune, K., Lane, W. S. and Young, R. A.
Yeast RNA polymerase II subunit RPB11 is related to a subunit shared by RNA polymerase I and III.
Gene Expression, 3, 77-82 (1993)

Woychik, N. A. and Young, R. A.
Genes encoding TFIIIA and the RNA polymerase common subunit RPB6 are divergently transcribed in Saccharomyces cerevisiae.
Proc. Natl. Acad. Sci. U.S.A. 89, 3999-4003 (1992)

Woychik, N. A., Lane, W. S. and Young, R. A.
Yeast RNA polymerase II subunit RPB9 is essential for growth at temperature extremes.
J. Biol. Chem. 266, 19053-19055 (1991)

Woychik, N. A. and Young, R. A.
RNA polymerase II subunit RPB10 is essential for yeast cell viability.
J. Biol. Chem. 265, 17816-17819 (1990)

Woychik, N. A. and Young, R. A.
RNA polymerase II structure and function.
Trends Biochem. Sci. 15, 347-351 (1990)

Kolodziej, P. A., Woychik, N., Liao, S.- M., and Young, R. A.
RNA polymerase II subunit composition, stoichiometry, and phosphorylation.
Mol. Cell. Biol. 10, 1915-1920 (1990)

Woychik, N. A., Liao, S-. M., Kolodziej, P. K., and Young, R. A.
Subunits shared by eukaryotic nuclear RNA polymerases.
Genes Dev. 4, 313-323 (1990)

Woychik, N. A. and Young, R. A.
RNA polymerase II subunit RPB4 is essential for high- and low-temperature yeast cell growth.
Mol. Cell. Biol. 9, 2854-2859 (1989)